Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230058, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497265

RESUMO

The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Hydra , Microbiota , Humanos , Animais , Hydra/fisiologia , Peptídeos , Bactérias , Células Epiteliais
2.
Sci Rep ; 14(1): 5083, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429381

RESUMO

The ability to record every spike from every neuron in a behaving animal is one of the holy grails of neuroscience. Here, we report coming one step closer towards this goal with the development of an end-to-end pipeline that automatically tracks and extracts calcium signals from individual neurons in the cnidarian Hydra vulgaris. We imaged dually labeled (nuclear tdTomato and cytoplasmic GCaMP7s) transgenic Hydra and developed an open-source Python platform (TraSE-IN) for the Tracking and Spike Estimation of Individual Neurons in the animal during behavior. The TraSE-IN platform comprises a series of modules that segments and tracks each nucleus over time and extracts the corresponding calcium activity in the GCaMP channel. Another series of signal processing modules allows robust prediction of individual spikes from each neuron's calcium signal. This complete pipeline will facilitate the automatic generation and analysis of large-scale datasets of single-cell resolution neural activity in Hydra, and potentially other model organisms, paving the way towards deciphering the neural code of an entire animal.


Assuntos
Hydra , 60598 , Animais , Hydra/fisiologia , Cálcio , Sistema Nervoso , Animais Geneticamente Modificados
3.
Proc Biol Sci ; 291(2017): 20232123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378148

RESUMO

Hydra has a tubular bilayered epithelial body column with a dome-shaped head on one end and a foot on the other. Hydra lacks a permanent mouth: its head epithelium is sealed. Upon neuronal activation, a mouth opens at the apex of the head which can exceed the body column diameter in seconds, allowing Hydra to ingest prey larger than itself. While the kinematics of mouth opening are well characterized, the underlying mechanism is unknown. We show that Hydra mouth opening is generated by independent local contractions that require tissue-level coordination. We model the head epithelium as an active viscoelastic nonlinear spring network. The model reproduces the size, timescale and symmetry of mouth opening. It shows that radial contractions, travelling inwards from the outer boundary of the head, pull the mouth open. Nonlinear elasticity makes mouth opening larger and faster, contrary to expectations. The model correctly predicts changes in mouth shape in response to external forces. By generating innervated : nerve-free chimera in experiments and simulations, we show that nearest-neighbour mechanical signalling suffices to coordinate mouth opening. Hydra mouth opening shows that in the absence of long-range chemical or neuronal signals, short-range mechanical coupling is sufficient to produce long-range order in tissue deformations.


Assuntos
Hydra , Animais , Hydra/fisiologia , Boca/fisiologia , Epitélio , Fenômenos Biomecânicos , Neurônios
4.
Sci Total Environ ; 917: 170282, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272078

RESUMO

The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.


Assuntos
Plásticos Biodegradáveis , Cnidários , Hydra , Poluentes Químicos da Água , Animais , Hydra/fisiologia , Ecossistema , Poli-Hidroxibutiratos , Água Doce , Polímeros , Poluentes Químicos da Água/toxicidade , Plásticos
5.
Curr Biol ; 33(24): 5288-5303.e6, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995697

RESUMO

Although recent studies indicate the impact of microbes on the central nervous systems and behavior, it remains unclear how the relationship between the functionality of the nervous system, behavior, and the microbiota evolved. In this work, we analyzed the eating behavior of Hydra, a host that has a simple nervous system and a low-complexity microbiota. To identify the neuronal subpopulations involved, we used a subpopulation-specific cell ablation system and calcium imaging. The role of the microbiota was uncovered by manipulating the diversity of the natural microbiota. We show that different neuronal subpopulations are functioning together to control eating behavior. Animals with a drastically reduced microbiome had severe difficulties in mouth opening due to a significantly increased level of glutamate. This could be reversed by adding a full complement of the microbiota. In summary, we provide a mechanistic explanation of how Hydra's nervous system controls eating behavior and what role microbes play in this.


Assuntos
Hydra , Microbiota , Animais , Hydra/fisiologia , Sistema Nervoso , Comportamento Alimentar
6.
Anim Cogn ; 26(6): 1799-1816, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37540280

RESUMO

The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.


Assuntos
Hydra , Animais , Hydra/fisiologia , Sistema Nervoso , Neurônios
7.
Sci Adv ; 9(29): eadh4054, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478191

RESUMO

Inflammatory caspases sensing lipopolysaccharide (LPS) to drive gasdermin (GSDM)-mediated pyroptosis is an important immune response mechanism for anti-infection defense in mammals. In this work, we resolved an LPS-induced and GSDM-gated pyroptosis signaling cascade in Cnidarians. Initially, we identified a functional GSDM protein, HyGSDME, in Hydra, executing cytosolic LPS-induced pyroptosis in a caspase-dependent manner. Further, we identified a proinflammatory caspase, HyCaspA, capable of sensing cytosolic LPS by an uncharacterized N-terminal domain relying on its unique hydrophobic property, thereby triggering its oligomerization and self-activation. Subsequently, the LPS-activated HyCaspA cleaved an apoptotic caspase, HyCARD2, to trigger HyGSDME-gated pyroptosis. Last, HyGSDME exhibited an enriched distribution on the ectodermal layer of Hydra polyps, exerting a canonical immune defense function against surface-invading bacteria. Collectively, our work resolved an ancient pyroptosis signaling cascade in Hydra, suggesting that inflammatory caspases sensing cytosolic LPS to initiate GSDM-gated pyroptosis are a conserved immune defense mechanism from Cnidarians to mammals.


Assuntos
Caspases , Hydra , Piroptose , Caspases/metabolismo , Hydra/fisiologia , Lipopolissacarídeos , Gasderminas , Transdução de Sinais
8.
Integr Comp Biol ; 63(6): 1442-1454, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37355780

RESUMO

In animals, epithelial tissues are barriers against the external environment, providing protection against biological, chemical, and physical damage. Depending on the organism's physiology and behavior, these tissues encounter different types of mechanical forces and need to provide a suitable adaptive response to ensure success. Therefore, understanding tissue mechanics in different contexts is an important research area. Here, we review recent tissue mechanics discoveries in three early divergent non-bilaterian systems-Trichoplax adhaerens, Hydra vulgaris, and Aurelia aurita. We highlight each animal's simple body plan and biology and unique, rapid tissue remodeling phenomena that play a crucial role in its physiology. We also discuss the emergent large-scale mechanics in these systems that arise from small-scale phenomena. Finally, we emphasize the potential of these non-bilaterian animals to be model systems in a bottom-up approach for further investigation in tissue mechanics.


Assuntos
Epitélio , Hydra , Placozoa , Cifozoários , Animais , Epitélio/fisiologia , Placozoa/fisiologia , Cifozoários/fisiologia , Hydra/fisiologia
9.
Curr Biol ; 33(10): 1893-1905.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040768

RESUMO

The cnidarian Hydra vulgaris has a simple nervous system with a few hundred neurons in distributed networks. Yet Hydra can perform somersaults, a complex acrobatic locomotion. To understand the neural mechanisms of somersaulting we used calcium imaging and found that rhythmical potential 1 (RP1) neurons activate before somersaulting. Decreasing RP1 activity or ablating RP1 neurons reduced somersaulting, while two-photon activation of RP1 neurons induced somersaulting. Hym-248, a peptide synthesized by RP1 cells, selectively generated somersaulting. We conclude that RP1 activity, via release of Hym-248, is necessary and sufficient for somersaulting. We propose a circuit model to explain the sequential unfolding of this locomotion, using integrate-to-threshold decision making and cross-inhibition. Our work demonstrates that peptide-based signaling is used by simple nervous systems to generate behavioral fixed action patterns. VIDEO ABSTRACT.


Assuntos
Cnidários , Hydra , Animais , Hydra/fisiologia , Sequência de Aminoácidos , Peptídeos , Sistema Nervoso
10.
Proc Natl Acad Sci U S A ; 120(13): e2220167120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947516

RESUMO

Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polyp Hydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation in Hydra, and stabilize aster/vortex-like defects, as observed at a Hydra's mouth. On curved surfaces mimicking the morphologies of Hydra in various stages of development-from spheroid to adult-our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.


Assuntos
Hydra , Animais , Anisotropia , Morfogênese , Hydra/fisiologia , Regeneração/fisiologia , Padronização Corporal
11.
Proc Natl Acad Sci U S A ; 120(11): e2210439120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897982

RESUMO

How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.


Assuntos
Hydra , Animais , Hydra/fisiologia , Cálcio , Músculos , Movimento
12.
Sci Rep ; 12(1): 13368, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922470

RESUMO

One of the major events in animal morphogenesis is the emergence of a polar body axis. Here, we combine classic grafting techniques with live imaging to explore the plasticity of polarity determination during whole body regeneration in Hydra. Composite tissues are made by fusing two rings, excised from separate animals, in different configurations that vary in the polarity and original positions of the rings along the body axes of the parent animals. Under frustrating initial configurations, body axis polarity that is otherwise stably inherited from the parent animal, can become labile and even be reversed. Importantly, the site of head regeneration exhibits a strong bias toward the edges of the tissue, even when this involves polarity reversal. In particular, we observe head formation at an originally aboral tissue edge, which is not compatible with models of Hydra regeneration based only on preexisting morphogen gradients or an injury response. The site of the new head invariably contains an aster-like defect in the organization of the supra-cellular ectodermal actin fibers. While a defect is neither required nor sufficient for head formation, we show that the defect at the new head site can arise via different routes, either appearing directly following excision as the tissue seals at its edge or through de novo defect formation at the fusion site. Altogether, our results show that the emergence of a polar body axis depends on the original polarity and position of the excised tissues as well as structural factors, suggesting that axis determination is an integrated process that arises from the dynamic interplay of multiple biochemical and mechanical processes.


Assuntos
Hydra , Actinas , Animais , Citoesqueleto , Hydra/fisiologia , Morfogênese/fisiologia , Regeneração/fisiologia
13.
STAR Protoc ; 3(3): 101504, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042889

RESUMO

The remarkable regenerative abilities of the small cnidarian Hydra vulgaris include the capacity to reassemble itself after dissociation into individual cells. Here, we present a robust protocol for the dissociation and reaggregation of Hydra tissue that addresses many common challenges encountered during the preparation and execution of the dissociation, as well as the formation and care of regenerating cellular aggregates. Analysis of the process provides insight into the mechanisms of nervous system self-organization. For complete details on the use and execution of this protocol, please refer to Lovas and Yuste (2021).


Assuntos
Hydra , Animais , Hydra/fisiologia
14.
Proc Natl Acad Sci U S A ; 119(35): e2204122119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994642

RESUMO

Hydra's almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs-p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)-are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of ß-catenin signaling or the application of recombinant Wnts. We propose a model in which a ß-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.


Assuntos
Hydra , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hydra/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Dev Biol ; 488: 74-80, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577031

RESUMO

We present a new transgenic Hydra vulgaris line expressing a distinct fluorescent protein in each of the three cell lineages of the adult polyp. Plasmid microinjection was used to generate a novel transgenic Hydra line expressing the yellow fluorescent protein YPet in the ectodermal epithelial cell lineage. Tissue grafting was then used to combine a YPet animal with a line that expresses DsRed2 in the endodermal epithelial lineage and eGFP in the interstitial cell (i-cell) lineage. The resulting triple-labeled ("tricolored") transgenic line provides, for the first time, a Hydra in which all three cell lineages can be imaged simultaneously in vivo. We show example confocal images of whole animals and individual cells to illustrate the imaging capabilities that this new line makes possible. We also used this line to carry out new studies of cell fate in the tentacles. Specifically, we evaluated the well-accepted notion that all tentacle cells are terminally differentiated and are displaced or migrate exclusively towards the distal end of the tentacle. We found that ectodermal and endodermal epithelial cells are displaced distally, as expected. In contrast, members of the i-cell lineage, which resembled neuronal precursors, could migrate out of a tentacle into the body column. This example illustrates how this tricolored transgenic line enables new in vivo studies of cell behaviors in Hydra.


Assuntos
Hydra , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula , Ectoderma/fisiologia , Células Epiteliais , Hydra/fisiologia
16.
Bioessays ; 44(5): e2100233, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35261041

RESUMO

The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.


Assuntos
Hydra , Microbiota , Animais , Biologia , Folículo Piloso , Humanos , Hydra/fisiologia , Interações Microbianas , Microbiota/fisiologia
17.
Int J Dev Biol ; 65(10-11-12): 523-536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34549798

RESUMO

The cnidarian Hydra possesses remarkable regenerative capabilities which allow it to regrow lost or damaged body parts in a matter of days. Given that many key regulators of regeneration and development are evolutionarily conserved, Hydra is a valuable model system for studying the fundamental molecular mechanisms underlying these processes. In the past, kinase inhibitors have been useful tools for determining the role of conserved signaling pathways in Hydra regeneration and patterning. Here, we present a systematic screen of a commercially available panel of kinase inhibitors for their effects on Hydra regeneration. Isolated Hydra gastric segments were exposed to 5 µM of each kinase inhibitor and regeneration of the head and foot regions were scored over a period of 96 hours. Of the 80 kinase inhibitors tested, 28 compounds resulted in abnormal regeneration. We directed our focus to the checkpoint kinase 1 (Chk1) inhibitor, SB 218078, considering the role of Chk1 in G2 checkpoint regulation and the importance of G2-paused cells in Hydra regeneration. We found that Hydra exposed to SB 218078 were unable to regenerate the head and maintain head-specific structures. Furthermore, SB 218078-treated Hydra displayed a reduction in the relative proportion of epithelial cells; however, no differences were seen for interstitial stem cells or their derivatives. Lastly, exposure to SB 218078 appeared to have no impact on the level of mitosis or apoptosis. Overall, our study demonstrates the feasibility of kinase inhibitor screens for studying Hydra regeneration processes and highlights the possible role for Hydra Chk1 in head regeneration and maintenance.


Assuntos
Hydra , Animais , Quinase 1 do Ponto de Checagem , Células Epiteliais , Hydra/fisiologia , Transdução de Sinais , Células-Tronco
18.
Nat Commun ; 12(1): 4795, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373460

RESUMO

Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.


Assuntos
Neurônios/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Cálcio , Expressão Gênica , Técnicas Genéticas , Hydra/genética , Hydra/fisiologia , Vias Neurais/fisiologia , Neuropeptídeos , Optogenética , Transdução de Sinais
19.
Elife ; 102021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328079

RESUMO

Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra's diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.


Assuntos
Hydra/fisiologia , Mecanotransdução Celular/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Técnicas Analíticas Microfluídicas , Sistema Nervoso/metabolismo , Imagem Óptica
20.
Curr Biol ; 31(17): 3784-3796.e3, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34297913

RESUMO

Although much is known about how the structure of the nervous system develops, it is still unclear how its functional modularity arises. A dream experiment would be to observe the entire development of a nervous system, correlating the emergence of functional units with their associated behaviors. This is possible in the cnidarian Hydra vulgaris, which, after its complete dissociation into individual cells, can reassemble itself back together into a normal animal. We used calcium imaging to monitor the complete neuronal activity of dissociated Hydra as they reaggregated over several days. Initially uncoordinated neuronal activity became synchronized into coactive neuronal ensembles. These local modules then synchronized with others, building larger functional ensembles that eventually extended throughout the entire reaggregate, generating neuronal rhythms similar to those of intact animals. Global synchronization was not due to neurite outgrowth but to strengthening of functional connections between ensembles. We conclude that Hydra's nervous system achieves its functional reassembly through the hierarchical modularity of neuronal ensembles. VIDEO ABSTRACT.


Assuntos
Hydra , Animais , Cálcio , Hydra/fisiologia , Sistema Nervoso , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...